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Abstract: This article describes method for calibration of red blood cell model. We
have several elastic coefficients in our model and we need to make sure, that our
model of red blood cell has the same behavior as real red blood cell. We prepared
simulations according to experiments and compared the results. We found out that
elastic coefficients depend on number of triangulation nodes. We have calibrated two
meshes with our method and predicted the correct values for a third mesh from these
two.

1 Introduction
These days modeling of elastic object in fluid flow is very popular in many science
region in many applications.

Our model of elastic object is based on a triangular spring mesh on object surface.
We can change number of nodes in the mesh. Less nodes mean less accuracy, but
faster computing. Elastic behavior is due to five elastic moduli: stretching, bending,
local and global area conservation and volume conservation. Each modulus has its
own parameter - elastic coefficient. In the following, we use ks for stretching coeffi-
cient, kb for bending, kal for local area, kag for global area and kv for volume. For
complete description of the model we refer reader to [1]. The model is implemented
in Object-in-fluid framework [2] as part of open-source software Espresso [3].

In this work, we take a model of red blood cell (RBC) and calibrate it. It means
finding values for parameters of five elastic moduli in the model. In earlier work
[4], we have shown there is no a general formula for recalculating parameters for
different mesh (different number of nodes on surface) from one reference mesh.



2 Calibration set up
One way to determine elastic coefficients of RBC is to compare the results of stretch-
ing experiments of RBC in-vitro with simulation of stretching RBC. [5, 6] describe
data from experiments with biological RBC. They measured the change of shape,
in particular the values of transversal and axial diameter, see Figure 1. If we apply
external force, RBC stretches and its diameters change. The experiments provide
data on stretching by several discrete forces. If we use interpolation, we obtain con-
tinuous information. Of course, each RBC is one of a kind, so the experimental data
show mean value with variance.

Figure 1: Stretching of RBC. On the left, we see the beginning of simulation: we
stretched cell by applying force at several nodes on surface, illustrated by black ar-
rows. On the right: final stage of simulation - relaxed state, we measured transversal
and axial diameter.

We had prepared a set of simulations. We took one mesh (a particular trian-
gulation of cell surface) and determined the stretch points. These points were on
a ring with diameter about 2µm, the same as in experiments, in which RBC was
stretched by attached silica beads. For different meshes we have different num-
ber of stretched points and diameter of stretched rings. In the next step, we chose
value ranges for elastic coefficients. Then we took one combination of coefficients,
stretched cell by several forces and measured diameters in relaxed state for each
applied force. Next, we evaluated how well we fitted experimental data. For this
purpose, we have defined Σdev as sum of squares of diameter’s deviations for each
applied force: Σdev =

∑
i[(a

i
s − aie)

2 + (tis − tie)
2], where ais and tis are ith axial

and transverse diameters measured in simulations for ith force, aie and tie have same
meaning, but they were measured in experiment with biological RBC. Each number,
Σdev , belongs to one set of values of five elastic coefficients ks, kb, kal, kag , kv . The
example of simulation outputs with different Σdev is in Figure 2.



2.1 Value range for coefficient
We had several possibilities, how to look for the range of coefficients. From purely
mathematical point of view, we should take coarse range of values of elastic coeffi-
cients, same for each coefficient, divide to e.q. ten intervals and then run simulations
for each combination. But that would mean huge number of simulations. From
physical point of view, many of these combinations do not make sense and we may
choose a specific range for coefficients. We can start from a coarse range, coarse
division and continue with fine division in subranges with better fit. The calibration
process will not be purely automatic, but iterations will be faster.

2.2 Finding good fit
For each combination of coefficients, we had one value for Σdev . The easiest way to
identify the most appropriate coefficients is to find the global minimum from these
values. However, we are looking for stable coefficients, because we need to have
stable cell for further simulations. So for our purposes, we are looking for relatively
wide local minimum region, not for the single smallest value of Σdev . Several com-
binations of coefficients have caused completely unphysical behavior of cell. There-
fore, another selection criterion is relative large distance from these ”bad” regions.

We have several options to find ”good” regions. The first one is calculation of
the range of deviations as rangedev = Σmax

dev −Σmin
dev and looking at the simulations,

which have Σdev < (Σmin
dev + 0.05 × rangedev). This approach is not sufficiently

general, if the value rangedev is too large. The second one is selection of the best
5% of simulations. It means we sort simulations, i.e. combination of coefficients,
by Σdev and then we look at top 5% of combinations. Probably the most general
approach is taking all combinations, which have Σdev less than some value.

3 Outcomes
In the following, we give two examples for cell with triangulation mesh with 141 and
958 nodes on surface. We have used the set up, which is described in the previous
section. For both meshes we ran same first iteration with coarse ranges of coeffi-
cients. The range for each parameter was split into three values. With 5 parameters,
this gives 35 = 243 combinations of 5 parameters. Second iterations had different
fine ranges and included again 243 combinations of coefficients. We selected those
combinations of elastic coefficients, for which Σdev was less then 1, this means very
good fit with experimental values. This suitable coefficients are in Table 1.



nodes ks kb kal kag kv
141 0.0055 0.055 0.005 0.275; 0.5 1; 3; 5
958 0.0055 0.01 0.01; 0.02 0.05 2; 6; 10

Table 1: The suitable coefficients for 141 and 958 from calibration process, more
than one value means that the fit was equally well for each of them.

3.1 Sensitivity of coefficients
We looked at the sensitivity of the model with respect to change of elastic coeffi-
cients. Greater sensitivity means greater change in outcomes (value of transverse
and axial diameter in relaxed state), if we change the value of coefficients. Our hy-
pothesis was that ks and kb (stretching and bending) are much more sensitive than
kal, kag and kv (local and global area and global volume). To confirm our hypothesis
about sensitivity, we have changed sequentially each one coefficient, while we were
keeping others fixed. The coefficients were changed to quadruple, double, half and
quarter of the original value. Then we run calibration process again and evaluated
how many times change Σdev relative to original value. The outputs are in Table 2.
We see much more greater change for ks and kb than for kal, kag and kv . In the same
time, there are some limits for each coefficient (denoted by ”-” in the table), beyond
which has the cell model completely unphysical behavior, as we wrote above.

141nodes
change ks kb kal kag kv
4 · ki 106.4 − 2.8 1.6 1.0
2 · ki 23.1 − 1.6 1.2 1.0

0.5 · ki 8.6 30.7 1.0 2.5 1.0
0.25 · ki 23.2 7.9 1.2 10.0 1.0

958nodes
change ks kb kal kag kv
4 · ki 95.4 − 2.2 4.2 2.8
2 · ki 21.9 − 1.5 2.9 1.2

0.5 · ki 4.4 13.9 1.7 1.2 2.0
0.25 · ki 11.9 31.5 3.5 6.4 1.7

Table 2: The values of Σdev due to changed coefficients. In the first column, there
are written the changes of coefficients. Inside the table, there is value, how many
times was change Σdev due to the change of particular coefficient. The ”− ” means,
that there was unphysical behavior for this value of coefficient.



3.2 Prediction for uncalibrated mesh
We predicted values of coefficients for mesh with 510 nodes. Its density is roughly
between 141 and 958, so we took arithmetic mean of the coefficients, which had
Σdev < 1, they are in Table 1. We ran the simulation with predicted coefficients and
the Σdev was less then 1, too. It means, we can make prediction for a new mesh and
find good enough coefficients faster.

3.3 Graphical representation
In Figure 2 we see results of experimental stretching of biological RBC - black solid
lines with error bars that denote variance and results from our simulations for cell
with 958 nodes on surface - colored lines for three different Σdev . There are results
for the best fit (the coefficients are in Table 1) and for worse fits, when we changed
ks to double and half of original value, see Table 2.

Each biological RBC is unique, so each has different measurements in the stretch-
ing experiment. One can say that simulation line inside the error bars is good enough.
However, we were aiming for fit of the mean values.
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Figure 2: There are three lines from three simulations and one black experimental
line in the graph. We compare values at 7 points (black squares) to calculate Σdev .
The error bars show the variance of experimental data.



4 Conclusion
We showed that we have sufficiently precise and relatively quick method for cali-
bration of our cell model. We showed, that model exhibits different sensitivity to
different elastic coefficients. From results of coefficient calibrations of two different
mesh cell, we were able to predict elastic coefficients of a third mesh. In the future,
it will be necessary and interesting to compare the results with some from different
experiment with RBC, e.q. cell passing thorough narrow opening in the channel.
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[4] I. Jančigová and R. Tóthová, “Scalability of forces in mesh-based models of
elastic objects,” in ELEKTRO, 2014: 10th International Conference, May 2014,
pp. 562–566.

[5] M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell de-
formed by optical tweezers,” Journal of the Mechanics and Physics of Solids,
vol. 51, no. 11, pp. 2259–2280, 2003.

[6] M. Dao, J. Li, and S. Suresh, “Molecularly based analysis of deformation of
spectrin network and human erythrocyte,” Materials Science and Engineering:
C, vol. 26, no. 8, pp. 1232–1244, 2006.


