BiomedMicrofluidics

(iba v angličtine)

Title Modelling and Optimization of Microfluidic Devices for Biomedical Applications

Project ID 303580

Call 31028580

Abstract Circulating tumor cells (CTCs) are isolated tumor cells disseminated from the site of disease in metastatic or primary cancers, including breast, prostate, and lung cancer. CTCs can be identified and counted in the peripheral blood of patients. The biological analysis of CTCs using lab-on-chip technologies effectively diagnose the disease, determine personalized therapies, and adjust treatments in real time. This significantly increases the survival chance of the patients. Because of their rare occurrence, a few CTCs per 1 mL of blood, the CTCs must be isolated from the blood sample. Recent developments of microfluidic devices made a significant breakthrough in the detection and filtration of CTCs from blood. The aim of the project is to incorporate rigorous optimization techniques in the development of such devices. In the design process of currently manufactured devices, the focus has not been put on the performance optimization. The use of mathematically justified optimization techniques offers huge potential for increasing the efficiency. A computer tool for simulation of complex processes inside microfluidic devices will be developed. A novel capture mechanism based on local affinity interactions will be elaborated. An optimization framework will be established and implemented in the software. With this framework, new devices with higher efficiency will be designed. During the designing process, different concepts will be optimized, e.g. geometry, blood flow velocities, external magnetic fields manipulating ferromagnetic parts of the device, and other. The optimization will be carried out in a rigorous way by applying iterative optimization techniques, which is a novel element in the development of microfluidic devices. The underlying physical models will be properly calibrated and validated, and the simulation and the optimization methods will be mathematically justified.

Project objectives The aim of the project is the incorporation of optimization techniques in the development of microfluidic devices with biomedical applications. To achieve this, a robust computer tool for simulation of complex processes inside microfluidic devices must be developed. The computational core of the simulation tool will consist of the following basic components: fluid solver component, for which we use the Lattice-Boltzmann Method (LBM) and the immersed objects component, for which we use spring-network models of elastic objects. To capture important bio-mechanical aspects of cell adhesion, a third component will be developed, namely the adhesion component describing how a cell adheres to a functionalized surface. A suitable adhesion mechanism will be elaborated that is based on local affinity interactions. The well-balanced coupling between all three components will form a robust simulation tool. The underlying physical models will be properly calibrated and validated. 

Methodologies The modelling comprises three main components: the description of the fluid flow, the description of elastic objects and the description of adhesion processes. More details about the processes can be found on the site dedicated to the cell-in-fluid research site

Progress

 

events&news

04.04. 2017
Nové PhD pozície

Od septembra 2016 otvárame tri nové doktorandské miesta. Záujemcovia o výskum v rámci našej výskumnej skupiny nájdu viac informácii tejto stránke.

11.01. 2017
Pozvánka na Workshop

Pozývame vás na 2nd Workshop on Modelling of Biological Cells, Fluid Flow and Microfluidics, ktorý sa bude konať 5-9. februára 2017 vo Vrátnej doline. Viac informácií tu

10.05. 2016
Publikovaný nový článok

Spoločne sme publikovali článok v časopise  Journal of Computational Science (2015 Impact Factor 1.231). Názov článku znie  Simulation study of rare cell trajectories and capture rate in periodic obstacle arrays. Gratulujeme autorom.

08.04. 2016
Nový článok

Nedávno sme publikovali nový článok v Computer Methods in Biomechanics and Biomedical Engineering,  (Impact Factor 1.770). Názov článku je Collision rates for rare cell capture in periodic obstacle arrays strongly depend on density of cell suspension. Článok je prístupný online na  stránke časopisu alebo v sekcii  publikácie

08.01. 2016
Nový článok

Nedávno sme publikovali nový článok v International Journal for Numerical Methods in Biomedical Engineering (Impact Factor 2.052). Názov článku je  Non-uniform force allocation for area preservation in spring network models. Článok je prístupný online na  stránke časopisu alebo v sekcii  publikácie. Gratulujeme Ivete and Ivanovi.

04.09. 2015
Vítame nových kolegov

V septembri sa ku našej skupine pripojili dvaja noví doktorandi: Martin Slávik and Marek Kotus. Vitajte!

26.08. 2015
Dosiahnutý PhD titul

Gratulujeme Ivete k úspešnému obhájeniu PhD. Veľa šťastie (nielen) v ďaľšom výskume.

02.08. 2015
Konferencia v Edinburgu

V Júli sa Iveta a Martin B. zúčastnili konferencie Discrete Simulation of Fluid Dynamics (DSFD2015). Vo svojom príspevku prezentovali naše výsledky dosiahnuté pri analýze periodicky rozmiestnených prekážok.

15.10. 2014
ICNAAM

Naša skupina sa zúčastnila konferencie ICNAAM 2014. I.Cimrák zorganizoval sympózium s názvom Modelling of Biological Cells, Fluid Flow and Microfluidics. 

05.09. 2014
Vítame nových členov

Začiatkom septembra sa naša výskumná skupina rozrástla o dvoch nových členov, doktorandov Janu Kadlecovú a Martina Bušíka. Vitajte :-)

2010-2017 © Cell-in-fluid, KST ŽUŽ - Všetky práva vyhradené. All right reserved.